

Home Search Collections Journals About Contact us My IOPscience

The localised vibrational mode two-phonon absorption of carbon in gallium arsenide

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1989 J. Phys.: Condens. Matter 1 4025 (http://iopscience.iop.org/0953-8984/1/25/015)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.93 The article was downloaded on 10/05/2010 at 18:21

Please note that terms and conditions apply.

LETTER TO THE EDITOR

The localised vibrational mode two-phonon absorption of carbon in gallium arsenide

L Z Zhang⁺, Y C Du⁺, B R Zhang⁺, Y H Wang[‡], B C Ma[‡] and G G Gin[†]§

[†] Department of Physics, Peking University, Beijing, People's Republic of China
[‡] Beijing General Research Institute of Non-Ferrous Metals, Beijing,
People's Republic of China
§ CCAST (World Laboratory), PO Box 8730, Beijing, People's Republic of China

Received 18 April 1989

Abstract. It is found that the 1115 and 1157 cm⁻¹ absorption bands in GaAs doped intentionally with ¹³C (measured at 300 K) are manifestations of the localised vibrational mode two-phonon absorption of ¹²C_{As} and ¹³C_{As}. The ratios of the absorption intensity for single-phonon processes to that for two-phonon processes for ¹²C and ¹³C in GaAs are about 87 at 300 K and 75 at 10 K, respectively.

The introduction of light elements into semiconductors gives rise to local vibrational modes (LVM) and the corresponding absorption can be observed in the mid-infrared (IR) absorption spectrum [1, 2]. LVM absorption has become an important experimental method; it can be used to identify impurities, to obtain their concentrations and to determine their positions or site symmetries in the lattice. Although a large amount of research has been carried out on LVM absorption, as far as we know no unambiguous LVM two-phonon absorption has been reported to date. A weak band at 1013 cm⁻¹ in the infrared absorption spectrum of silicon was observed and attributed to an overtone of the 515 cm⁻¹ band related to interstitial oxygen [3]. In fact, the overtone of the 515 cm⁻¹ mode should be located at about 1030 cm⁻¹ and the 17 cm⁻¹ difference is too large to merit this conclusion.

Studying the LVM absorption bands of the prevailing shallow acceptor, carbon, in GaAs, besides the 579 cm⁻¹ LVM absorption band attributed commonly to ¹²C_{As} in GaAs [4], we have observed a weak 1157 cm⁻¹ LVM absorption band with a frequency exactly double that of the former. In order to find out whether the band observed is really the overtone of the LVM absorption band of ¹²C_{As} and not an unknown absorption band coincidentally located there, semi-insulating GaAs was intentionally doped with ¹³C and the existence of LVM two-phonon absorption bands related to both ¹²C and ¹³C was confirmed from the absorption measurements.

Three kinds of GaAs sample grown by the liquid-encapsulated Czochralski (LEC) method in a pyrolytic boron nitride (PBN) crucible were used. The parameters of all the samples used are listed in table 1.

Because the natural isotopic abundance of ${}^{13}C$ is only 1.108%, while that of ${}^{12}C$ is near to 99%, we would not normally observe any carbon isotope effect. Carbon isotopically

Absorbance

Table 1. The parameters for the three kinds of GaAs sample used.

ence).

enriched with ¹³C was intentionally doped into semi-insulating GaAs (sample 1) during the process of crystal growth by the LEC method. The intensity of the absorption band is defined as the product of its peak absorption coefficient α (in cm⁻¹) and the full width at half maximum (FWHM) Δ (in cm⁻¹). The concentration of ¹²C in GaAs can be obtained conveniently from the absorption intensity and the conversion coefficient 1.1×10^{16} cm⁻² [5]. Using the absorption intensity and the same conversion coefficient [6] we can obtain the concentration of ¹³C. The actual concentrations of ¹³C and ¹²C measured in sample 1 are 1.4×10^{16} and 6.1×10^{15} cm⁻³, respectively.

In order to increase the sensitivity of the IR measurements the GaAs ingots were cut into slices that were 10 mm thick and the surfaces were lapped to a mirror finish. The infrared absorption spectra were measured using a Nicolet 7199 B-1 Fourier transform infrared spectrometer, which was operated at a resolution of 4 cm^{-1} , with 500 scans.

The following results were obtained.

(i) Two absorption bands at 579 and 558 cm⁻¹, corresponding to the LVM bands of ${}^{12}C_{As}$ and ${}^{13}C_{As}$ (carbon substitution on the arsenic site) respectively, were observed for sample 1 (sample 3, with the same thickness, was taken as a reference sample for the measurement) at 300 K, which is in agreement with the results of [4]. In addition, a pair of IR absorption peaks at 1115 and 1157 cm⁻¹, with exactly double the frequency of the former ones, were clearly observed, as shown in figure 1,

(ii) The absorption peaks at 579 and 1157 cm⁻¹ were observed at 300 K for sample 2 without ¹³C doping (sample 3 was again taken as a reference), as shown in figure 2. Neither the 558 cm⁻¹ nor the 1115 cm⁻¹ absorption band was observed for this sample. This indicates that the latter pair of bands are related to ¹³C while the former are related to ¹²C.

Temperature (K)	Absorption band position (cm ⁻¹)			
	Single-phonon absorption		Double-phonon absorption	
	$^{12}C_{As}$	¹³ C _{As}	$^{12}C_{As}$	¹³ C _{As}
300	579	558	1157	1115
10	582	561	1164	1121

Table 2. Single-phonon and double-phonon absorption bands of $^{12}C_{As}$ and $^{13}C_{As}$ in GaAs at 300 K and 10 K.

Figure 2. The IR absorption spectrum of sample 2 (sample 3 was taken as a reference).

(iii) In sample 1, the absorption intensity ratio of the 558 cm⁻¹ band (${}^{13}C_{As}$) and the 579 cm⁻¹ (${}^{12}C_{As}$) band is about 2.3 (indicating that the concentration ratio of ${}^{13}C$ and ${}^{12}C$ is about 2.3). Also the absorption intensity ratio of the 1115 cm⁻¹ band (${}^{13}C_{As}$) and 1157 cm⁻¹ (${}^{12}C_{As}$) is 2.4, which is consistent with the former ratio within the experimental error.

(iv) When the measurement temperature is about 300 K, the absorption intensity ratio of the 558 cm⁻¹ band and its overtone at 1115 cm⁻¹ is about 85 and the absorption intensity ratio of the 579 cm⁻¹ band and its overtone band at 1157 cm⁻¹ is about 88. These values are consistent with each other within the experimental error. The infrared absorption spectra of sample 1 were also measured at 10 K. At that temperature, both the ratios mentioned above decreased to approximately the same value—about 75.

(v) The LVM bands related to ${}^{12}C_{As}$ and ${}^{13}C_{As}$ at 300 K and 10 K are listed in table 2. Clearly the overtone relations are maintained at both 300 K and 10 K.

In view of these results, the absorption bands located at 1115 and 1157 cm⁻¹ (measured at 300 K) can be unambiguously identified as the LVM two-absorption of ${}^{13}C_{As}$ and ${}^{12}C_{As}$, respectively, in GaAs.

References

- [1] Newman R C 1973 Infrared Studies of Crystal Defects (London: Taylor and Francis) p 154
- [2] Barker A S and Sievers A J 1975 Rev. Mod. Phys. Suppl. 2 47 51
- [3] Pajot B, Stein H J, Cales B and Naud C 1985 J. Electrochem. Soc. 132 3034
- [4] Brozel M R, Clegg J B and Newman R C 1978 J. Phys. D: Appl. Phys. 11 1331
- [5] Hunter A T, Kimura H, Baukus J P, Winston H V and Marsh O J 1984 Appl. Phys. Lett. 4474
- [6] Homma Y, Ishii Y, Kobayashi T and Osaka J 1985 J. Appl. Phys. 57 2931